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We consider a liquid-vapor interface in thermal equilibrium. The tangential 
component of the pressure tensor is supposed to depend explicitly upon the 
position and the density profile. Under this hypothesis the mechanical definition 
of surface tension becomes a finite summation of N+ 1 terms related directly to 
the local compressibility. When the inhomogeneous compressibility equation is 
considered, the theory provides a microscopic expression of the surface tension 
coefficient. A calculation for argon near the critical point is done; the agreement 
with experiment is satisfactory, 
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1. I N T R O D U C T I O N  

We sketch a theory  of  surface tens ion based on the idea tha t  the tangent ia l  
c o m p o n e n t  P~- of the pressure  tensor  P is an explici t  funct ion of the 
pos i t ion  z and  the densi ty  p(z)  within the i nhomogeneous  interracial  
region. This assumpt ion ,  suggested recent ly  by Percus,  (1) can be seen as a 
genera l iza t ion  of  the T o l m a n  ~ and  O n o  and  K o n d o  ~ hypothesis .  
Fo l lowing  this idea, in sect ion 2 the surface tension a is wri t ten  as a sum of 
N integrals  involving the pa r t i a l  der ivat ives  with respect  to the pos i t ion  of  
OPT/@, plus a con t r i bu t ion  conta in ing  the pa r t i a l  der ivat ive  
~N+IpT/~ZN+I only. As OPr/Op is re la ted  to the "local  compress ib i l i ty ,"  we 

follow the so-cal led "compress ib i l i ty  rou te"  ins tead  of the pressure  route  
invest igated by  K i r k w o o d  (4) and  others.  (s)'2 

1 Instituto de Fisica de Liquidos y Sistemas Biol6gicos, Universidad Nacional de la Plata, La 
Plata (1900), Argentina. 

2 Reference 5 extends the pressure tensor to mixtures. 
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In order to give a microscopic expression for the surface tension, in 
Section3, we obtain the local transverse compressibility from the 
generalized local thermodynamic and the first Yvon equations. Then the 
local compressibility is expressed in terms of the one- and two-particle dis- 
tribution functions. Section 4 is devoted to checking the theory, calculating 
approximately the surface tension of argon near the critical point. In the 
light of the numerical results for different density profiles, a comparison 
with other theories and experimental values is performed. 

2. S U R F A C E  T E N S I O N  

The mechanical definition of surface tension a for a flat liquid-vapor 
interface at the z = 0 plane is (6) 

a= ( p - P T )  dZ (1) 

where p is the equilibrium pressure and PT is assumed here to be strictly 
locally dependent on z and p(z). This dependence removes the vanishing of 
a produced in the point-thermodynamic approximation, ~2'3'6) when the 
density profile p(z) is the step function, for any PT(P). If, e.g., Pr(z, p(z)) = 
p + A(p(z)) 6(z), where A (p(z)) is any function of p(z) different from zero at 
z = 0 ,  and 6(z) is the delta "function," then a e 0  for the step density 
function. 

Equation (1) can be written, after a partial integration, (7) 

F a = z dPv(z, p(z)) (2) 
- - o 0  

The total differential of PT is 

Thus, Eq. (2) becomes 

r = f_~ z \  ~p L 2 _~ \ ~z )o dz2 (3) 

The second term of the equation can be integrated by parts: 

- ~  L \  az/oJ 

By applying l'H6pital's rule, we find that the first term of the rhs is null if 
z ( P r - p ) ~ O  and z(p(z)--PL.v)~O when z ~  +_~. 
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The total differential d[(OPr/OZ)o ] is 

d~(~PT~ ~ ~ (~IDT~ pt dz ~2PT 
L\-Ez  ) , J = ~ z \  op ) ,  + G T z  2az  

Substituting the above relation in Eqs. (3) and (4), we obtain 

t O - ~  (5) 

By carrying out ( N -  2) times similar operations to those performed in Eqs. 
(3)-(5), we finally get 

~- ,=o(n+l) ! -~  &--~\-~-pL & 
( - 1 )  N 

f z N+' dz (6) 
(~v+ 1)! _~ \ ~z N+~ ) .  

where, as before, by ]'H6pital's rule, the first term in each partial 
integration is null. 

The summation in Eq. (6) contains the local compressibility via 
c~Pr/O p and for any value of N we have an expression for the surface 
tension. 

If the explicit dependence on z proposed here is identified with that 
considered in mean-field theories, i.e., 

Pr(z, p(z)) =- PT(P', P', .... p(z)) 

the operator O/(?z is identified with 

0 ~ p,, ~ + ~- + p'" ... 
~?z @' 

So, in this context, Eq. (6) would include the square density gradient and 
higher order derivatives. 

3. I N H O M O G E N E O U S  C O M P R E S S I B I L I T Y  E Q U A T I O N  A N D  
S U R F A C E  T E N S I O N  

Let us consider a fluid, inhomogeneous in the z direction and in ther- 
mal equilibrium. In the grand canonical ensemble the single density p(~) is 

p ( 1 ) ( f l ) = 2  1 ~ A 3 N ( N _ I )  ! exp df2df3. . .df  N (7) 
N ~ I  kBT 
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where ~ is the grand partition function, /~ is the chemical potential, 
A = (h2/2rcmkB T) m is the de Broglie thermal length, kB is the Boltzmann 
constant, and T is the absolute temperature. Uw is the configurational 
energy of the N moleculas and V N is the external potential. 

VN can be written as 
N 

v ~ =  y~ v,(~) (8) 
i=l 

Let us consider pU) as a functional of vi(?) for a given chemical poten- 
tial #: 

pU)= p(9)[v~(f)] (9) 
From the first Yvon - __(s) equation it follows that 

_kB T 6P(1)(rl) ~v(~2) = PU~(~O '~(~' - ~ )  + P~2)(~" ~)  - '~ P~'~(~O (10) 

This equation enable us to find the change 6p for any change 6v. 

[ 6Pl')(rl) 6v(f2) dr2 (11) 
bp(1)(~,) = J 6v(F2) 

If we choose a particular change of v such that fro = dl~, then from Eq. (7) 
we get 

p~'~[v(~) +,~v0] = ~') p~+a~[v] (12) 

Using Eqs. (11) and (12), we obtain 

dp(')(F,) = d,u f 6P(')(~') d? 2 (13) 
~v0=2) 

then by substitution of Eq. (10) into (13) we have 

@(1) 1 + f dfl kB T {p(i)(~1) [p(2)(~,, r2 ) -  p(1)(~,) p(l)(~2) ] d~2} (14) 

As we want to evaluate the surface tension from Eq, (6), it is necessary to 
know OPT/Op. This quantity can be obtained using some relations from 
local thermodynamics. 

On evaluating the work done on the system to change its area, it is 
easy to find a relation between the inverse local compressibility p(~PT/Op) 
and the chemical potential kt(6): 

(I/p) OP~/ap = a#/Op (15) 
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The rhs of this equation can be evaluated by using Eq. (14): 

OPT(Z, p(z)) { }_1 
=k BT l +_df12p(z2)[g(r12, z l ) - l ]  

~p(z) 
(16) 

where p(2)(f 1, i2)=p(1)(zl)p(~)(z2)g(rl2, Zl) and p(1)is only a function of 
Z I �9 

On substitution of Eq. (16) into (6), one obtains the surface tension: 

~ ( _ _ t ) n f o o o o {  f }--1 a= (n+l)-----~.kBr z "+1 1+ p(z2)[g(r, z l ) - l ] d f  
/ l  = 0 

( _ _ 1 )  N (,oo 1 ~N+lpT 
X P " ( z I ) d z I - { "  ( N + I ) !  J_oo ZN+ ~zz N~T dz (17) 

The surface tension given by Eq. (17) is functionally dependent on the 
function p(z), g(r, zl), and OPrfi?z and its successive derivatives. It does not 
depend explicitly on the intermolecular potential. 

4. S U R F A C E  T E N S I O N  E V A L U A T I O N  

We will calculate the surface tension for argon near the critical point 
using Eq. (17) for N =  1, by approximating the anisotropic radial dis- 
tribution function and using some trial density profiles. 

For N =  1, Eq. (6) is 

(OPr) p, 1 o~ x 2 0 (OPT~ p' dz 

~f~176 z -Sp-x~ dz (18) 

The second term of this equation was calculated via Eq. (16) by using the 
identity 

 _(0PT) 
Oz\ op Jz d z \  Op Jz Op \ Op )z 

and considering that p(z + z~)~p(zl) holds near the critical point. (9) The 
last term of this equation has been rejected. However, in order to weight its 
contribution, we have used a van der Waals-like equation of state (6) 

PT= P + W(p)-- imp'2 

822/49/5-6-22 
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Considering the operator 8/& equivalent to (Off?y)p"+ (O/{?p")p"+ ..., 
then 

02Pr m d 2 

8z 2 - 2 dz 2 ( p , 2 )  

and using the van der Waals expression for a, 

a vw = m p'(z) 2 dz 
- - o o  

we find that the last term of Eq. (18) is of the order avW/2. Then, for a van 
der Waals fluid, our numerical results will be affected by this error. 

The anisotropic radial distribution function g(r, zl) is approximated 
by the following interpolated relation: 

g(r, Zl) = av(zl) gv(r) + aL(ZI) gL(r) (19) 

where gL(r) and gv(r) are the radial distribution functions of the liquid 
and vapor phases, respectively, weighted by zl-dependent coefficients: 

PL--P(Zl).  p (Z l ) - -pv  
a V(Zl) - -  , aL(Zl)-  

PL--Pv  PL--Pv  

We use the experimental values for gL(r) and gv(r) obtained by Mikolaj 
and Pings (1~ at the coexistence temperature T=  148.16 K, with densities 
PL = 0.780 g/cm 3 and p v = 0.280 g/cm 3 of pure phases, respectively) 

Three different z-dependent trial density profiles were employed, 
namely Fisk-Widom (FW), error function (ERF), and hyperbolic tangent 
(TANH),(12) whose analytical expressions are 

xf2 tanh(zx/-d/L~) (FW) 
p ( z ) = p + + p  [3-tanhZ(z-/-6/L1Vll/2, v - -  ,J 

f zx/~\ 
p(z)= p + + p_ err (--~-2) (ERF) 

p < z ) = p + + p _  tanh (2~3) (TANH) 

3 The work of Eisenstein and Gingrich I1') gives experimental values of gL and gv, but they 
are inadequate for our calculation because the compressibility equation is very sensitive to 
the tail of the distribution functions. The mentioned work does not provide sufficient infor- 
mation in this region. A confirmation of this assertion was given by calculating the surface 
tension and the liquid and vapor compressibilities for Ar employing Ping's distribution 
functions truncated at the same interval covered by Eisenstein's measurements.  The obtained 
values showed a discrepancy of several orders of magnitude from experimental results at the 
same temperature. 
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w h e r e p + = p L + p v a n d p  = P c -  p v and L1, L2, and L3 are the respec- 
tive interfacial widths defined as Li= p-[~?p(z)i/~?z]z_o. At temperatures 
near the critical point Wu and Webb masured the reflectivity at the surface 
for S F  6. The critical index v, corresponding to the divergence of the inter- 
facial, width, was determined using the mentioned trial profiles. The values 
of v obtained were found to be v = 0.62-t-0.01 (ERF) and v = 0.66 _+ 0.02 
(FW). The classical profile (TANH) gave v=  0.80-t-0.05. Thus, the ERF 
and FW profiles give essentially better fits than the classical profile and the 
values of v are both close to the exponent for the divergence of the 
correlation length at the critical point. 

The interfacial width L for Ar at T =  120 K is known by experiment 
for the ERF profile(13~; then, using the relation (14) 

L Ar= Lar(1 -- T/Tc) v (20) 

and considering v = 0.62 _+ 0.01 (12) (a universal constant), and T~.= 
150.73 K, we obtain L Ar (which is substance-dependent), and finally 
LAr(148.16 K). As far as we know, measurements of the interfacial width 
for Ar when the density profile is represented by FW or TANH profiles are 
unavailable. However, the interfacial width for S F  6 a s  a function of T for 
each of the three mentioned profiles is known. (~2) Then, assuming, at a 
given temperature, the constancy of the interfacial width per molecular 
diameter (L/aa), irrespective of the considered substance and knowing the 
molecular diameters o-a(SF6)  and ~a(Ar), (15) we calculate L1, L2, and L 3. 
Values obtained by the procedure just outlined are gathered in Table I. 

] ' ab le  I. In te r fac ia l  W i d t h  / fo r  A r g o n  at  T = 1 4 8 . 1 6  K O b t a i n e d  f r o m  
L fo r  SF s at  the  S a m e  T e m p e r a t u r e  a 

Value for given profile 

TANH ERF FW 

SF6 L 1 = 17 ,~ L 2 = 117 .~ L 3 = 100 ,~ 

n = L(SF6)/ffd(SF6) 9 21 18 

Ar LI = 30.65 ~ L 2 = 71.51 ~ L 3 = 61.29 

a n is the number of molecular diameters. Od(SF6) = 5.5] z~ is the molecular diameter for SF 6 
obtained from the second virial coefficient. For argon the corresponding value is ad(Ar)= 
3.405 A.~ls) Then L1, L2, and L 3 for Ar are calculated by the expression L i = n ,  ad(Ar),. 
Using the expression L = L 0 ( 1 -  T/Tc) -v' from the values of Ref. 12 for an ERF profile at 
T =  120 K, we extrapolated the following result at T =  148.16 K: 

L(148.16 K) = 5.907 ~ .  (1 -- 148.16/150.86) o.62 = 71.55/~, 

which is virtually the same as the tabulated value obtained by using the universality 
criterion. 
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With the aproximations done on g(f, zl), the "experimental" p(zt) and 
the respective interfacial widths, we evaluate the first two terms of Eq. (16). 
The numerical results are gathered in Table II. 

Finally, we discuss the adequacy of Eq. (19). Triezenberg and Zwanzig 
(TZ) derived an expression for the surface tension that involves the direct 
correlation function c(?~,~2). So, if we were able to calculate c(?,zl) 
corresponding to Eq. (19), we could make the desired test via the TZ 
equation. 

It is well known that the Ornstein-Zernike equation links c(?, zl) to 
g(?, zl). A local approximation is 

c(r12, zl)=h(r12, z l ) -  f p(z3)c(r~3, za)h(r23, za)d~ 3 (21) 

Local homogeneity around z leads to 

c(r12, z l ) =  h(r12, Z l ) -  p(zl) aL(zl) c(rl3, zl) hL(r23) dr3 
oO 

--  p ( Z l )  av(Z1) C(rl3, zl )  hv(r23) dF3 ( 2 2 )  
- - o 0  

Table II. Experimental and Theoretical Surface Tension Values for Argon. 

Temperature cr (exp) a (theor) 
(K) (dynes/cm) (dynes/cm) 

149.0 0.16 a 5.28 c 

4.85 a 
1.52 e 

148.16 0.20 b 1.62, 0.71, 0.64 f 
0.68, 0.31, 0.36g 

145.0 0.57 2.10 h 

143.8 0.73 1.80 i 

135.0 2.10 4.60 j 

a Experimental value reported by Stansfield. (23} 
b Extrapolation using a~xp(149 K) as a reference value. 
c Using g(r) given by Zwanzig eta/. (24) and a Lennard-Jones intermolecular potential. 
a Using g(c~r), given by Zwanzig et al., {21} where c~ is a correction factor. 
e Following MacLellan's approximation/22} 
r Results corresponding to Eq. (17) from our theory using the TANH, ERF, and FW profiles, 

respectively. 
g Results corresponding to Eq. (25), using the TZ expression for a, and the TANH, ERF, and 

FW trial density profiles respectively. 
h By computer simulation using MC method/TM 
' Perturbation theory. 12~ 
J By computer simulation using MC and MD methods. {191 
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where we have used g(r, zl) given by Eq. (19) and the fact that g(r l : )=  
h(r12) + 1. 

Fourier transforming Eq. (22), we get 

c(k; z1) :  ~(k; z~)/[1 + ~(k; Z1) ] (23) 

where 

h(k; Zl) = aL(zl) iL(k)+ av(zl) iv(k___)) 
PL Pv 

iL(k ) and iv(k) are the experimental x-ray scattering intensities of the liquid 
and gas phases, respectively, (t~ given by 

sin(kr) dr i(k) = pfo 4~zr2h(r) 

The inverse Fourier transform of Eq. (23) gives the desired anisotropic 
direct correlation function 

1 ['~ h(k;zl) sin(kr) dk 
c(r; zl) = ~ Jo k (24) 

1 + p(Zl) ~(k; z,) 

In the evaluation of the last expression we have included the correction for 
small-angle scattering (k--* 0) suggested by Mikolaj and Pings. (1~ 

By substitution of Eq. (24) into the approximated TZ equation for 
a, <6) we get 

,,~27Zk T J_ dz, [p '(zl)]  2 drr%(r;zl) (25) o--  3 B 

In the numerical calculation of a given by Eq. (25) we employed the 
same density profiles mentioned above. The numerical results are also 
included in Table II. 

5. S U M M A R Y  A N D  C O M M E N T S  

An expression has been obtained for the surface tension coefficient; 
Eq. (17) contains integrals that are functions of the inverse local com- 
pressibility. We believe that this approach helps clarify the link between the 
surface tension and an elastic property such as the local isothermal com- 
pressibility. Baus, (16) using a microscopic approach to the elastic interfacial 
behavior, expressed the surface tension also as a particular combination of 
adiabatic surface elastic coefficients. 
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Our expression for surface tension, like that derived by Triezenberg 
and Zwanzig, (17) involves the density profile and the two-particle dis- 
tribution function. In neither case is there explicit reference to the inter- 
molecular potential (as there is in those obtained by the virial route(4)); 
both approaches make use of the fluctuation theory. The expression of 
Triezenberg and Zwanzig is obtained by calculating the change in free 
energy associated with an increase of surface area caused by the fluc- 
tuations in density, while we focus attention on the connection between the 
surface tension and the local compressibility, the last being expressed 
through the first Yvon equation. 

A semiempirical calculation of the surface tension of Ar at T=  
148.16 K for three different density profiles (FW, ERF, and TANH) has 
been done using Eq. (17). The first term of this equation gives the essential 
contribution, the second is only a minor correction, and the last is rejected. 

The approximation used in the anisotropic correlation function given 
by Eq. (19) is a reliable one. The corresponding direct correlation function 
[Eq. (24)] was used together with the same trial density profiles, via the 
TZ equation. The numerical values obtained for ~ are of the same order of 
magnitude as those given by experiment. 

Table II shows a discrepancy between the numerical results of the 
surface tension evaluated via Eq. (17) and the TZ expression. It must be 
kept in mind that our calculation has rejected a term of the order of avw/2. 
The same data show that the ERF and FW profiles are more suitable than 
the classic TANH profile. Wu and Webb (12) also observed that these two 
profiles give better values of the critical exponent than the TANH profile. 

Finally, we also include in TableII results from computer 
simulations, (18'19) perturbation theory, (2~ the modified Kirkwood-Buff 
equation, (2~'22~ and an experiment reported by Stansfield. (23) 

It is remarkable that our formula, which is a "local" one, provides a 
value of surface tension of the order of the experimental data for argon at 
temperatures of order 100 K, where collective modes (capillary waves) are 
expected to control the phenomenon. Nevertheless, this is not strange, 
because we include fluctuations in a way in that experience has shown is 
successful when the system is not too far from the critical point. 
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